These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Docosahexaenoic acid modulates the expression of T-bet and GATA-3 transcription factors, independently of PPARalpha, through suppression of MAP kinase activation.
    Author: Attakpa E, Hichami A, Simonin AM, Sansón EG, Dramane KL, Khan NA.
    Journal: Biochimie; 2009; 91(11-12):1359-65. PubMed ID: 19799960.
    Abstract:
    The present study was conducted on CD4(+) T cells, isolated from wild type (WT) and PPARalpha(null) mice, in order to assess the mechanism of action of docosahexaenoic acid (DHA), an n-3 fatty acid, in the modulation of two transcription factors, i.e., T-bet and GATA-3, implicated in T-cell differentiation towards, respectively, T(H)1 and T(H)2 phenotype. The T-cells from PPARalpha(null) mice secreted higher IFN-gamma and lower IL-4 concentrations than WT T-cells. Furthermore, the deletion of PPARalpha gene in T-cells resulted in the upregulation of T-bet and downregulation of GATA-3 both at mRNA and protein levels. DHA exerted not only an inhibitory effect on T-cell proliferation, but also diminished IFN-gamma and stimulated IL-4 secretions in both cell types. DHA also downregulated T-bet and upregulated GATA-3 both at transcription and protein levels. Though the T-cells from PPARalpha(null) mice expressed higher p38 phosphorylation than WT T-cells, DHA diminished the MAP kinase phosphorylation (p38 and ERK1/2) in both the cell types. The pharmacological inhibitors of MAP kinases also downregulated T-bet and upregulated GATA-3 in T-cells. Altogether, these results demonstrate that DHA, via its action on MAP kinases, modulates the expression of transcription factors. These results also explain the mechanism of action of this fatty acid on T-cell differentiation in disease and health.
    [Abstract] [Full Text] [Related] [New Search]