These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing.
    Author: Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y.
    Journal: Biosens Bioelectron; 2009 Dec 15; 25(4):901-5. PubMed ID: 19800781.
    Abstract:
    Direct electrochemistry of a glucose oxidase (GOD)-graphene-chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (k(s)) of 2.83 s(-1). A much higher enzyme loading (1.12 x 10(-9)mol/cm(2)) is obtained as compared to the bare glass carbon surface. This GOD-graphene-chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08mM to 12mM glucose with a detection limit of 0.02mM and much higher sensitivity (37.93microAmM(-1)cm(-2)) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.
    [Abstract] [Full Text] [Related] [New Search]