These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes.
    Author: Schaffran T, Li J, Karlsson G, Edwards K, Winterhalter M, Gabel D.
    Journal: Chem Phys Lipids; 2010 Jan; 163(1):64-73. PubMed ID: 19800875.
    Abstract:
    N,N,N-Trialkylammonioundecahydrododecaborates (1-), a novel class of compounds of interest for use as anions in ionic liquids, interact with DPPC liposomes. Increasing compound concentration causes an increasing negative zeta potential. Dissociation constants demonstrate that the binding capacity increases strongly with longer chain length. N,N,N-Trialkylammonioundecahydrododecaborates with longer alkyl chains show a detergent-like behavior: the compounds incorporate into the liposome membrane and differential scanning calorimetric experiment show already low concentrations cause a complete disappearance of the peak representing the gel-to-liquid crystalline phase transition. In contrast, compounds with shorter alkyl chains only interact with the headgroups of the lipids. Investigations by means of cryo-TEM reveal that all derivatives induce significant morphological changes of the liposomes. N,N,N-Trialkylammonioundecahydrododecaborates with short alkyl chains produce large bilayer sheets, whereas those with longer alkyl chains tend to induce the formation of open or multi-layered liposomes. We propose that the binding of N,N,N-trialkylammonioundecahydrododecaborates is mainly due to electrostatic interactions between the doubly negatively charged cluster unit and the positively charged choline headgroup; the positively charged ammonium group might be in contact with the deeper-lying negatively charged phosphate. For N,N,N-trialkylammonioundecahydrododecaborates with longer alkyl chains hydrophobic interactions with the non-polar hydrocarbon part of the membrane constitute an additional important driving force for the association of the compounds to the lipid bilayer.
    [Abstract] [Full Text] [Related] [New Search]