These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State. Author: Frey BL, Krusemark CJ, Ledvina AR, Coon JJ, Belshaw PJ, Smith LM. Journal: Int J Mass Spectrom; 2008 Oct 01; 276(2-3):136-143. PubMed ID: 19802328. Abstract: Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively "parked" within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate-a technique termed "ion parking". The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state.[Abstract] [Full Text] [Related] [New Search]