These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Author: Wu J, Yang S, Hua Y, Liu W, Keep RF, Xi G. Journal: Acta Neurochir Suppl; 2010; 106():147-50. PubMed ID: 19812938. Abstract: Evidence suggests that microglia activation contributes to brain injury after intracerebral hemorrhage (ICH). The present study aimed to determine if minocycline, an inhibitor of microglia activation, can reduce brain edema, brain atrophy and neurological deficits after ICH.Male Sprague-Dawley rats received an infusion of 100-microL autologous whole blood into the right basal ganglia. Rats received minocycline or vehicle treatment. There were two sets of experiments in this study. In the first set of experiments, the effects of minocycline on ICH-induced brain edema were examined at day 3. In the second set, behavioral tests were performed at days 1, 3, 7, 14 and 28. Rats were killed at day 28 for brain atrophy measurement (caudate and lateral ventricle size).Minocycline reduced perihematomal brain edema in the ipsilateral basal ganglia (78.8 +/- 0.4 vs. 80.9 +/- 1.1% in the vehicle-treated group, p < 0.01). Minocycline also improved functional outcome. In addition, minocycline reduced brain tissue loss in the ipsilateral caudate (p < 0.01) and ventricular enlargement (p < 0.05).In conclusion, minocycline attenuates ICH-induced brain edema formation, neurological deficits and brain atrophy in rats suggesting an important role of microglia in ICH-related brain injury.[Abstract] [Full Text] [Related] [New Search]