These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid.
    Author: Vaz AR, Delgado-Esteban M, Brito MA, Bolaños JP, Brites D, Almeida A.
    Journal: J Neurochem; 2010 Jan; 112(1):56-65. PubMed ID: 19818102.
    Abstract:
    High levels of unconjugated bilirubin (UCB) may initiate encephalopathy in neonatal life, mainly in pre-mature infants. The molecular mechanisms of this bilirubin-induced neurologic dysfunction (BIND) are not yet clarified and no neuroprotective strategy is currently worldwide accepted. Here, we show that UCB, at conditions mimicking those of hyperbilirubinemic newborns (50 microM UCB in the presence of 100 muM human serum albumin), rapidly (within 1 h) inhibited cytochrome c oxidase activity and ascorbate-driven oxygen consumption in 3 days in vitro rat cortical neurons. This was accompanied by a bioenergetic and oxidative crisis, and apoptotic cell death, as judged by the collapse of the inner-mitochondrial membrane potential, increased glycolytic activity, superoxide anion radical production, and ATP release, as well as disruption of glutathione redox status. Furthermore, the antioxidant compound glycoursodeoxycholic acid (GUDCA) fully abrogated UCB-induced cytochrome c oxidase inhibition and significantly prevented oxidative stress, metabolic alterations, and cell demise. These results suggest that the neurotoxicity associated with neonatal bilirubin-induced encephalopathy occur through a dysregulation of energy metabolism, and supports the notion that GUDCA may be useful in the treatment of BIND.
    [Abstract] [Full Text] [Related] [New Search]