These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells.
    Author: Lu M, Choo CH, Hu LF, Tan BH, Hu G, Bian JS.
    Journal: Neurosci Res; 2010 Jan; 66(1):92-8. PubMed ID: 19818370.
    Abstract:
    Intracellular pH (pH(i)) plays an important role in the regulation of central nervous system function. In the present study, we examined whether hydrogen sulfide (H(2)S), a recently recognized neuromodulator, regulates pH(i) in rat primary cultured glia cells. pH(i) was measured with a fluorescent sensitive dye, BCECF-AM. Activities of Cl(-)/HCO(3)(-) exchanger and Na(+)/H(+) exchanger were examined by assessing their capacities to load or extrude H(+) upon NH(4)Cl pulse load. We found that NaHS, a H(2)S donor, decreased pH(i) in a concentration-dependent manner ranging from 10 to 200muM in the primary cultured microglia. Blockade of the Cl(-)/HCO(3)(-) exchanger with, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or Na(+)/H(+) exchanger with 5-N-methyl-N-isobutylamiloride (MIA) significantly attenuated the pH(i)-lowering effect of NaHS. Moreover, NaHS significantly increased the activity of Cl(-)/HCO(3)(-) exchanger but inhibited that of Na(+)/H(+) exchanger. The pH regulatory effect of H(2)S was also observed in primary cultured astrocytes, but not in SH-SY5Y neuronal cells. In conclusion, we found for the first time that H(2)S induced intracellular acidification in glia cells via regulation of the activities of Cl(-)/HCO(3)(-) exchanger and Na(+)/H(+) exchanger. The present study may provide new evidence for H(2)S to serve as a neuromodulator and offer a potential approach for the treatment of neurological diseases.
    [Abstract] [Full Text] [Related] [New Search]