These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals. Author: Sorger B, Dahmen B, Reithler J, Gosseries O, Maudoux A, Laureys S, Goebel R. Journal: Prog Brain Res; 2009; 177():275-92. PubMed ID: 19818908. Abstract: The term 'locked-in'syndrome (LIS) describes a medical condition in which persons concerned are severely paralyzed and at the same time fully conscious and awake. The resulting anarthria makes it impossible for these patients to naturally communicate, which results in diagnostic as well as serious practical and ethical problems. Therefore, developing alternative, muscle-independent communication means is of prime importance. Such communication means can be realized via brain-computer interfaces (BCIs) circumventing the muscular system by using brain signals associated with preserved cognitive, sensory, and emotional brain functions. Primarily, BCIs based on electrophysiological measures have been developed and applied with remarkable success. Recently, also blood flow-based neuroimaging methods, such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), have been explored in this context. After reviewing recent literature on the development of especially hemodynamically based BCIs, we introduce a highly reliable and easy-to-apply communication procedure that enables untrained participants to motor-independently and relatively effortlessly answer multiple-choice questions based on intentionally generated single-trial fMRI signals that can be decoded online. Our technique takes advantage of the participants' capability to voluntarily influence certain spatio-temporal aspects of the blood oxygenation level-dependent (BOLD) signal: source location (by using different mental tasks), signal onset and offset. We show that healthy participants are capable of hemodynamically encoding at least four distinct information units on a single-trial level without extensive pretraining and with little effort. Moreover, real-time data analysis based on simple multi-filter correlations allows for automated answer decoding with a high accuracy (94.9%) demonstrating the robustness of the presented method. Following our 'proof of concept', the next step will involve clinical trials with LIS patients, undertaken in close collaboration with their relatives and caretakers in order to elaborate individually tailored communication protocols. As our procedure can be easily transferred to MRI-equipped clinical sites, it may constitute a simple and effective possibility for online detection of residual consciousness and for LIS patients to communicate basic thoughts and needs in case no other alternative communication means are available (yet)--especially in the acute phase of the LIS. Future research may focus on further increasing the efficiency and accuracy of fMRI-based BCIs by implementing sophisticated data analysis methods (e.g., multivariate and independent component analysis) and neurofeedback training techniques. Finally, the presented BCI approach could be transferred to portable fNIRS systems as only this would enable hemodynamically based communication in daily life situations.[Abstract] [Full Text] [Related] [New Search]