These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability. Author: Dragicevic-Curic N, Gräfe S, Gitter B, Winter S, Fahr A. Journal: Int J Pharm; 2010 Jan 15; 384(1-2):100-8. PubMed ID: 19819321. Abstract: In order to increase topical delivery of temoporfin (mTHPC), a highly hydrophobic photosensitizer with low percutaneous penetration, neutral, anionic and cationic flexible liposomes (i.e. flexosomes) were prepared and investigated for their penetration enhancing ability. The in vitro skin penetration study was performed using human abdominal skin mounted in Franz diffusion cells. Besides the effect of surface charge of flexosomes on skin penetration of mTHPC, also its effect on physical properties (particle size, polydispersity index, lamellarity) and physicochemical stability of vesicles was investigated. Photon-correlation spectroscopy revealed that vesicles had after preparation a small particle size and low polydispersity index, while cryo-electron microscopy confirmed that these vesicles were mostly unilamellar and of a spherical shape. Regarding stability, contrasting to anionic flexosomes showing lack of long-term stability, neutral and cationic flexosomes were stable during 9 months storage at 4 degrees C. As to the penetration enhancing ability, cationic flexosomes possessed the highest, i.e. they delivered the highest mTHPC-amount to stratum corneum and deeper skin layers compared to conventional liposomes, neutral and anionic flexosomes. In conclusion, mTHPC-loaded cationic flexosomes could be a promising tool for delivering mTHPC to the skin, which would be beneficial for the photodynamic therapy of cutaneous malignant or non-malignant diseases.[Abstract] [Full Text] [Related] [New Search]