These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence.
    Author: Volonte D, Galbiati F.
    Journal: EMBO Rep; 2009 Dec; 10(12):1334-40. PubMed ID: 19820694.
    Abstract:
    Thioredoxin reductase 1 (TrxR1) is an important antioxidant enzyme that controls cellular redox homeostasis. By using a proteomic-based approach, here we identify TrxR1 as a caveolar membrane-resident protein. We show that caveolin 1, the structural protein component of caveolae, is a TrxR1-binding protein by demonstrating that the scaffolding domain of caveolin 1 (amino acids 82-101) binds directly to the caveolin-binding motif (CBM) of TrxR1 (amino acids 454-463). We also show that overexpression of caveolin 1 inhibits TrxR activity, whereas a lack of caveolin 1 activates TrxR, both in vitro and in vivo. Expression of a peptide corresponding to the caveolin 1 scaffolding domain is sufficient to inhibit TrxR activity. A TrxR1 mutant lacking the CBM, which fails to localize to caveolae and bind to caveolin 1, is constitutively active and inhibits oxidative-stress-mediated activation of the p53/p21(Waf1/Cip1) pathway and induction of premature senescence. Finally, we show that caveolin 1 expression inhibits TrxR1-mediated cell transformation. Thus, caveolin 1 links free radicals to activation of the p53/p21(Waf1/Cip1) pathway and induction of cellular senescence by acting as an endogenous inhibitor of TrxR1.
    [Abstract] [Full Text] [Related] [New Search]