These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor 2-mediated activation oF ERK1/2 and NFκB. Author: Chang HC, Lin KH, Tai YT, Chen JT, Chen RM. Journal: Shock; 2010 May; 33(5):485-92. PubMed ID: 19823118. Abstract: Lipoteichoic acid (LTA), a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that ketamine has anti-inflammatory and antioxidant effects on gram-negative LPS-induced macrophage activation. In this study, we further evaluated the effects of ketamine on the regulation of LTA-induced TNF-alpha and IL-6 gene expressions and oxidative stress production in macrophages and its possible mechanisms. Exposure of macrophages to a therapeutic concentration of ketamine (100 microM) inhibited LTA-induced TNF-alpha and IL-6 expressions at protein or mRNA levels. In parallel, ketamine at 100 microM reduced LTA-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Sequentially, ketamine reduced the LTA-triggered translocation of nuclear factor-kappaB (NFkappaB) from the cytoplasm to nuclei and its transactivation activity. Pretreatment with PD98059, an inhibitor of ERK, decreased LTA-enhanced NFkappaB activation and TNF-alpha and IL-6 mRNA syntheses. Cotreatment with ketamine and PD98059 synergistically suppressed the LTA-induced translocation and transactivation of NFkappaB and biosyntheses of TNF-alpha and IL-6 mRNA. Application of Toll-like receptor 2 (TLR2) small interfering RNA (si)RNA into macrophages decreased the levels of this receptor, and simultaneously ameliorated LTA-augmented NFkappaB transactivation and consequent production of TNF-alpha and IL-6 mRNA. Cotreatment with ketamine and TLR2 siRNA synergistically lowered TNF-alpha and IL-6 mRNA syntheses in LTA-activated macrophages. Ketamine and TLR2 siRNA could reduce the LTA-induced increases in production of nitrite and intracellular reactive oxygen species in macrophages, and their combination had better effects than a single exposure. Thus, this study shows that one possible mechanism involved in ketamine-induced inhibition of LTA-induced TNF-alpha and IL-6 gene expressions and oxidative stress production is through downregulating TLR2-mediated phosphorylation of ERK1/2 and the subsequent translocation and transactivation of NFkappaB.[Abstract] [Full Text] [Related] [New Search]