These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction.
    Author: Hennige AM, Ranta F, Heinzelmann I, Düfer M, Michael D, Braumüller H, Lutz SZ, Lammers R, Drews G, Bosch F, Häring HU, Ullrich S.
    Journal: Diabetes; 2010 Jan; 59(1):119-27. PubMed ID: 19826167.
    Abstract:
    OBJECTIVE: In vitro models suggest that free fatty acid-induced apoptotic beta-cell death is mediated through protein kinase C (PKC)delta. To examine the role of PKCdelta signaling in vivo, transgenic mice overexpressing a kinase-negative PKCdelta (PKCdeltaKN) selectively in beta-cells were generated and analyzed for glucose homeostasis and beta-cell survival. RESEARCH DESIGN AND METHODS: Mice were fed a standard or high-fat diet (HFD). Blood glucose and insulin levels were determined after glucose loads. Islet size, cleaved caspase-3, and PKCdelta expression were estimated by immunohistochemistry. In isolated islet cells apoptosis was assessed with TUNEL/TO-PRO3 DNA staining and the mitochondrial potential by rhodamine-123 staining. Changes in phosphorylation and subcellular distribution of forkhead box class O1 (FOXO1) were analyzed by Western blotting and immunohistochemistry. RESULTS: PKCdeltaKN mice were protected from HFD-induced glucose intolerance. This was accompanied by increased insulin levels in vivo, by an increased islet size, and by a reduced staining of beta-cells for cleaved caspase-3 compared with wild-type littermates. In accordance, long-term treatment with palmitate increased apoptotic cell death of isolated islet cells from wild-type but not from PKCdeltaKN mice. PKCdeltaKN overexpression protected islet cells from palmitate-induced mitochondrial dysfunction and inhibited nuclear accumulation of FOXO1 in mouse islet and INS-1E cells. The inhibition of nuclear accumulation of FOXO1 by PKCdeltaKN was accompanied by an increased phosphorylation of FOXO1 at Ser256 and a significant reduction of FOXO1 protein. CONCLUSIONS: Overexpression of PKCdeltaKN in beta-cells protects from HFD-induced beta-cell failure in vivo by a mechanism that involves inhibition of fatty acid-mediated apoptosis, inhibition of mitochondrial dysfunction, and inhibition of FOXO1 activation.
    [Abstract] [Full Text] [Related] [New Search]