These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle. Author: Mello AF, Clark AJ, Perry KL. Journal: J Gen Virol; 2010 Feb; 91(Pt 2):545-51. PubMed ID: 19828763. Abstract: Cowpea chlorotic mottle virus (CCMV) is a bromovirus transmitted by species of chrysomelid beetles, including the spotted cucumber beetle, Diabrotica undecimpunctata howardii Barber. An experimental system was set up to identify the viral determinant(s) of the beetle transmission of CCMV. Nicotiana clevelandii was selected as an experimental plant host because it supports the replication and accumulation of both CCMV and a second member of the family Bromoviridae, cucumber mosaic virus (CMV). Using a reverse genetic system for CMV, a cDNA copy of the CCMV capsid protein (CP) gene was substituted for that of the CMV CP gene. The resulting 'CMV-hybrid' consisted of wild-type CMV RNA1, RNA2, and a chimeric CMV RNA3 expressing the CCMV structural protein. The CMV-hybrid replicated and formed virions in N. clevelandii; in electron micrographs the hybrid virus was indistinguishable from CCMV. In beetle feeding assays, both CCMV and the CMV-hybrid were transmitted by D. undecimpunctata, while beetle transmission of CMV was not observed. Conversely, only CMV was observed to be transmitted by the aphid Myzus persicae. Surprisingly, the CMV-hybrid was transmitted more efficiently than the parental CCMV, and a virus-induced alteration in beetle feeding behaviour is proposed to account for the difference. These results indicate that the CCMV CP is a viral determinant for beetle vector transmission.[Abstract] [Full Text] [Related] [New Search]