These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preserved microstructure and mineral distribution in tooth and periodontal tissues in early fossil hominin material from Koobi Fora, Kenya.
    Author: Klinge F, Dean MC, Risnes S, Erambert M, Gunnæs AE.
    Journal: Front Oral Biol; 2009; 13():30-35. PubMed ID: 19828965.
    Abstract:
    The aim of this study was to explore further the preservation of tissues and the mineral distribution in 1.6 million-year-old fossil hominin material from Koobi Fora, Kenya attributed to Paranthropus boisei (KNM-ER 1817). Bone, dentine and cementum microstructure were well preserved. Electron microprobe analysis of dentine and bone revealed an F-bearing apatite. Calcite now filled the original soft tissue spaces. The average Ca/P atomic ratio was 1.93, as compared to 1.67 in biological hydroxyapatite, indicating that the Ca-content had increased during fossilization. Analytical sums for mineral content were approximately 90 wt%. Some of the remaining 10 wt% may be preserved organic material. Demineralized dentine fragments showed irregularly distributed tubules encircled with a fibrous-like electron-dense material. A similar material was observed in demineralized dentine. Within this, structures resembling bacteria were seen. In demineralized bone an electron-dense material with a fibrous appearance and a banding pattern that repeated every 64 nm, similar to that of collagen, was noted. SEM of an enamel fragment (KNM-ER 6081) showed signs of demineralization/remineralization. Retzius lines, Hunter-Schreger bands and prism cross-striations spaced 3.7-7.1.microm apart were noted. Prisms were arranged in a pattern 3 configuration and deeper areas containing aprismatic enamel were occasionally observed. We conclude that a great deal of informative microstructure and ultrastructure remains preserved in this fossil material. We also hypothesize that the high mineral content of the tissues may 'protect' parts of the organic matrix from degradation, since our findings indicate that some organic matrix may still be present.
    [Abstract] [Full Text] [Related] [New Search]