These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chaperone activity of bicyclic nojirimycin analogues for Gaucher mutations in comparison with N-(n-nonyl)deoxynojirimycin. Author: Luan Z, Higaki K, Aguilar-Moncayo M, Ninomiya H, Ohno K, García-Moreno MI, Ortiz Mellet C, García Fernández JM, Suzuki Y. Journal: Chembiochem; 2009 Nov 23; 10(17):2780-92. PubMed ID: 19830760. Abstract: Gaucher disease (GD), the most prevalent lysosomal storage disorder, is caused by mutations of lysosomal beta-glucosidase (acid beta-Glu, beta-glucocerebrosidase); these mutations result in protein misfolding. Some inhibitors of this enzyme, such as the iminosugar glucomimetic N-(n-nonyl)-1-deoxynojirimycin (NN-DNJ), are known to bind to the active site and stabilize the proper folding for the catalytic form, acting as "chemical chaperones" that facilitate transport and maturation of acid beta-Glu. Recently, bicyclic nojirimycin (NJ) analogues with structure of sp2 iminosugars were found to behave as very selective, competitive inhibitors of the lysosomal beta-Glu. We have now evaluated the glycosidase inhibitory profile of a series of six compounds within this family, namely 5-N,6-O-(N'-octyliminomethylidene-NJ (NOI-NJ), the 6-thio and 6-amino-6-deoxy derivatives (6S-NOI-NJ and 6N-NOI-NJ) and the corresponding galactonojirimycin (GNJ) counterparts (NOI-GNJ, 6S-NOI-GNJ and 6N-NOI-GNJ), against commercial as well as lysosomal glycosidases. The chaperone effects of four selected candidates (NOI-NJ, 6S-NOI-NJ, 6N-NOI-NJ, and 6S-NOI-GNJ) were further evaluated in GD fibroblasts with various acid beta-Glu mutations. The compounds showed enzyme enhancement on human fibroblasts with N188S, G202R, F213I or N370S mutations. The chaperone effects of the sp2 iminosugar were generally stronger than those observed for NN-DNJ; this suggests that these compounds are promising candidates for clinical treatment of GD patients with a broad range of beta-Glu mutations, especially for neuronopathic forms of Gaucher disease.[Abstract] [Full Text] [Related] [New Search]