These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Author: Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, Sugiyama Y. Journal: Drug Metab Dispos; 2010 Jan; 38(1):168-76. PubMed ID: 19833843. Abstract: This study investigated the role of a multispecific organic anion transporter, Oatp1a4/Slco1a4, in drug transport across the blood-brain barrier. In vitro transport studies using human embryonic kidney 293 cells expressing mouse Oatp1a4 identified the following compounds as Oatp1a4 substrates: pitavastatin (K(m) = 8.3 microM), rosuvastatin (K(m) = 12 microM), pravastatin, taurocholate (K(m) = 40 microM), digoxin, ochratoxin A, and [d-penicillamine(2,5)]-enkephalin. Double immunohistochemical staining of Oatp1a4 with P-glycoprotein (P-gp) or glial fibrillary acidic protein demonstrated that Oatp1a4 signals colocalized with P-gp signals partly but not with glial fibrillary acidic protein, suggesting that Oatp1a4 is expressed in both the luminal and the abluminal membranes of mouse brain capillary endothelial cells. The brain-to-blood transport of pitavastatin, rosuvastatin, pravastatin, and taurocholate after microinjection into the cerebral cortex was significantly decreased in Oatp1a4(-/-) mice compared with that in wild-type mice. The blood-to-brain transport of pitavastatin, rosuvastatin, taurocholate, and ochratoxin A, determined by in situ brain perfusion, was significantly lower in Oatp1a4(-/-) mice than in wild-type mice, whereas transport of pravastatin and [D-penicillamine(2,5)]-enkephalin was unchanged. The blood-to-brain transport of digoxin was significantly lower in Oatp1a4(-/-) mice than in wild-type mice only when P-gp was inhibited by N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). Taken together, these results show that Oatp1a4 can mediate the brain-to-blood and blood-to-brain transport of its substrate drugs across the blood-brain barrier. The brain-to-plasma ratio of taurocholate, pitavastatin, and rosuvastatin was close to the capillary volume in wild-type mice, and it was not affected by Oatp1a4 dysfunction. Whether Oatp1a4 can deliver drugs from the blood to the brain remains controversial.[Abstract] [Full Text] [Related] [New Search]