These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Drosophila Dgt6 interacts with Ndc80, Msps/XMAP215, and gamma-tubulin to promote kinetochore-driven MT formation. Author: Bucciarelli E, Pellacani C, Naim V, Palena A, Gatti M, Somma MP. Journal: Curr Biol; 2009 Nov 17; 19(21):1839-45. PubMed ID: 19836241. Abstract: In centrosome-containing cells, spindle assembly relies on microtubules (MTs) nucleated from both centrosomes and chromosomes. Recent work has suggested that additional spindle MTs can be nucleated by gamma-tubulin ring complexes (gamma-TuRCs) that associate laterally with preexisting spindle MTs, leading to spindle amplification. It has been proposed that in Drosophila S2 cells, gamma-TuRCs are anchored to the spindle MTs by augmin, a multiprotein complex that contains at least eight subunits. Here we show that the Dgt6 component of augmin is primarily required for kinetochore fiber (k-fiber) formation. An analysis of MT regrowth after cold exposure showed that formation of kinetochore-driven k-fibers is severely impaired in Dgt6-depleted cells. In control cells, these fibers are enriched in Dgt6, gamma-tubulin, and Msps/XMAP215. Consistent with these results, Dgt6 coprecipitates with Msps, D-TACC, gamma-tubulin, Ndc80, and Nuf2. However, RNA interference (RNAi)-mediated inhibition of gamma-tubulin, Msps/XMAP215, or Ndc80/Hec1 reduced but did not abolish k-fiber regrowth. These results indicate that Dgt6 plays a pivotal role in kinetochore-driven k-fiber formation, mediating nucleation and/or initial stabilization of chromosome-induced MTs. We propose that Dgt6 binds and stabilizes nascent chromatin-induced MTs, facilitating their interaction with the Ndc80-Nuf2 complex. Dgt6 may also promote elongation of kinetochore-driven k-fibers through its interaction with gamma-tubulin and Msps.[Abstract] [Full Text] [Related] [New Search]