These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Author: Fudio S, Borobia AM, Piñana E, Ramírez E, Tabarés B, Guerra P, Carcas A, Frías J. Journal: Eur J Pharmacol; 2010 Jan 25; 626(2-3):200-4. PubMed ID: 19840783. Abstract: We investigate the impact of sex and genotype on citalopram disposition in 35 healthy volunteers who received an oral dose of 20mg citalopram within a single-dose bioequivalence study. CYP2C19*2 and *3, and CYP2D6*4 mutations were determined by Real-Time PCR. The influence of sex and genotype was analyzed by a linear mixed model for repeated measures, including formulation, period, sequence, sex, CYP2C19 and CYP2D6 as fixed effects and subject nested sequence*sex*CYP2C19*CYP2D6 as the random one. Pharmacokinetic parameters were log-transformed and AUC(infinity) and C(max) adjusted to the administered dose/weight. The model yields a statistical significance in AUC(infinity) and CL/F for CYP2C19 and CYP2D6. Gender, formulation, sequence or period effects were not statistically significant. AUC(infinity) of CYP2C19*1/*2 and CYP2C19*2/*2 carriers is 44% and 118% higher than wild type, respectively; CYP2D6 volunteers carrying 1/4 have an AUC 23% higher than wild type. Our data also suggest that the influence of CYP2D6 on AUC(infinity) is very low when it is in association with CYP2C19*1/*1 while its influence is more apparent in association with CYP2C19*1/*2. In conclusion, we demonstrate the influence of CYP2C19 and CYP2D6 in the disposition of citalopram, and we suggest that the influence of CYP2D6 is more probable in volunteers with at least one defective allele of CYP2C19.[Abstract] [Full Text] [Related] [New Search]