These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling.
    Author: Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX.
    Journal: Mol Cell Biol; 2010 Jan; 30(1):206-19. PubMed ID: 19841066.
    Abstract:
    Gap junction intercellular communication in osteocytes plays an important role in bone remodeling in response to mechanical loading; however, the responsible molecular mechanisms remain largely unknown. Here, we show that phosphoinositide-3 kinase (PI3K)/Akt signaling activated by fluid flow shear stress and prostaglandin E(2) (PGE(2)) had a stimulatory effect on both connexin 43 (Cx43) mRNA and protein expression. PGE(2) inactivated glycogen synthase kinase 3 (GSK-3) and promoted nuclear localization and accumulation of beta-catenin. Knockdown of beta-catenin expression resulted in a reduction in Cx43 protein. Furthermore, the chromatin immunoprecipitation (ChIP) assay demonstrated an association of beta-catenin with the Cx43 promoter, suggesting that beta-catenin could regulate Cx43 expression at the level of gene transcription. We have previously reported that PGE(2) activates cyclic AMP (cAMP)-protein kinase A (PKA) signaling and increases Cx43 and gap junctions. Interestingly, the activation of PI3K/Akt appeared to be independent of the activation of PKA, whereas both PI3K/Akt and PKA signaling inactivated GSK-3 and increased beta-catenin translocation. Together, these results suggest that shear stress, through PGE(2) release, activates both PI3K/Akt and cAMP-PKA signaling, which converge through the inactivation of GSK-3, leading to the increase in nuclear accumulation of beta-catenin. beta-Catenin binds to the Cx43 promoter, stimulating Cx43 expression and functional gap junctions between osteocytes.
    [Abstract] [Full Text] [Related] [New Search]