These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities.
    Author: Ho MY, Leu SJ, Sun GH, Tao MH, Tang SJ, Sun KH.
    Journal: J Immunol; 2009 Nov 15; 183(10):6217-26. PubMed ID: 19841177.
    Abstract:
    Gene transfer of IL-27 to tumor cells has been proven to inhibit tumor growth in vivo by antiproliferation, antiangiogenesis, and stimulation of immunoprotection. To investigate the nonimmune mechanism of IL-27 that suppresses lung cancer growth, we have established a single-chain IL-27-transduced murine Lewis lung carcinoma (LLC-1) cell line (LLC-1/scIL-27) to evaluate its tumorigenic potential in vivo. Mice inoculated with LLC/scIL-27 displayed retardation of tumor growth. Production of IL-12, IFN-gamma, and cytotoxic T cell activity against LLC-1 was manifest in LLC/scIL-27-injected mice. Of note, LLC-1/scIL-27 exhibited decreased expression of cyclooxygenase-2 (COX-2) and PGE(2). On the cellular level, the LLC/scIL-27 transfectants had reduced malignancy, including down-regulation of vimentin expression and reduction of cellular migration and invasion. The suppression of tumorigenesis by IL-27 on lung cancer cells was further confirmed by the treatment with rIL-27 on the murine LLC-1 and human non-small cell lung carcinoma (NSCLC) cell lines. PGE(2)-induced vimentin expression, movement, and invasiveness were also suppressed by the treatment with rIL-27. Our data show that IL-27 not only suppresses expression of COX-2 and PGE(2) but also decreases the levels of vimentin and the abilities of cellular migration and invasion. Furthermore, inoculation of LLC/scIL-27 into immunodeficient NOD/SCID mice also exhibited reduced tumor growth. Our data indicate that IL-27-induced nonimmune responses can contribute to significant antitumor effects. Taken together, the results suggest that IL-27 may serve as an effective agent for lung cancer therapy in the future.
    [Abstract] [Full Text] [Related] [New Search]