These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems.
    Author: Subauste MC, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI.
    Journal: Clin Exp Metastasis; 2009; 26(8):1033-47. PubMed ID: 19842048.
    Abstract:
    Increased metastatic and angiogenic potentials of aggressive human colon carcinoma cells were verified in independent chick embryo models by comparing in vivo highly metastatic SW620 colon carcinoma cell line with its isogenic, non-metastatic SW480 cell variant. In the experimental metastasis model, both cell types rapidly arrested in the chorioallantoic membrane (CAM) vasculature as demonstrated by quantitative PCR and immunohistochemistry. Live cell imaging also indicated that both SW620 and SW480 cells efficiently extravasated from the CAM capillary system. However, only few SW480 cells were present in the CAM tissue after 24-48 h. In contrast, the numbers of SW620 cells increased exponentially, indicating proliferative and survival advantages of metastatic colon carcinoma cells in vivo. Multicellular SW620 foci were identified in close proximity to CAM blood vessels. A positive correlation between increased metastatic ability and VEGF-expression of colon carcinoma SW620 cells was demonstrated by the substantial inhibitory effects of anti-VEGF treatment on the levels of metastatic colonization and density of blood vessels adjacent to tumor cell foci. Furthermore, the chick embryo angiogenesis model confirmed high levels of VEGF-dependent angiogenesis induced by SW620 cells, but not SW480 cells. Thus, chick embryo experimental metastasis and CAM angiogenesis models appear to coordinately reflect critical features of advanced colon carcinomas, i.e., the acquisition of enhanced survival and increased angiogenic potentials, both constituting critical determinants of colon cancer progression. The use of rapid and quantitative chick embryo models might provide alternative approaches to conventional mammalian model systems for screening anti-cancer agents.
    [Abstract] [Full Text] [Related] [New Search]