These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility. Author: Ke Y, Wang YJ, Ren L, Zhao QC, Huang W. Journal: Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067. Abstract: An ideal scaffold provides an interface for cell adhesion and maintains enough biomechanical support during tissue regeneration. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with pore sizes ranging from 100 to 500 microm and porosity approximately 90% were prepared by the particulate-leaching method, and then modified by the introduction of polyacrylamide (PAM) on the inner surface of scaffolds using in situ UV polymerization, with the aim of enhancing the biological and mechanical properties of the PHBV scaffolds. The modified PHBV scaffolds had interconnected pores with porosity of 75.4-78.6% and pore sizes at peak volume from 20 to 50 microm. The compressive load and modulus were up to 62.45 N and 1.06 MPa, respectively. The water swelling percentage (WSP) of the modified PHBV scaffolds increased notably compared with that of the PHBV scaffolds, with the maximum WSP at 537%. Sheep bone mesenchymal stem cells (BMSC) were cultured on the PHBV and modified PHBV. The hydrophilic PAM chains did not influence BMSC viability or proliferation index, but the initial cell adhesion at 1h of culture was enhanced significantly. Framing PHBV scaffold along with gel-like PAM chains inside is a novel model of inner surface modification for PHBV scaffolds, which shows potential in tissue engineering applications.[Abstract] [Full Text] [Related] [New Search]