These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurokinin-2 receptor antagonism in medial septum influences temporal-order memory for objects and forebrain cholinergic activity. Author: Schäble S, Huston JP, Brandao ML, Dere E, de Souza Silva MA. Journal: Peptides; 2010 Jan; 31(1):108-15. PubMed ID: 19854231. Abstract: UNLABELLED: In the mammalian brain the neurokinin NK(2) receptors are predominantly located in the hippocampus, thalamus, septum and frontal cortex. It has been shown that administration of the NK(2) receptor agonist, neurokinin A (NKA), into the medial septum of rats increases extracellular levels of acetylcholine (ACh) in the hippocampus and that NK(2) receptor antagonism blocks this increase. Therefore, given the prominent role of hippocampal ACh in information processing, we hypothesized that NK(2) receptor antagonism in the medial septum would negatively affect learning and memory via its influence on the cholinergic neurons of the basal forebrain. We investigated the action of local application of the peptidic NK(2) receptor antagonist, Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH (1, 10 and 100pmol), into the medial septum on object memory for temporal order and spatial location using an object novelty paradigm. By means of in vivo microdialysis and HPLC analyses, we also examined the influence of NK(2) receptor antagonism in the medial septum on ACh in major cholinergic projection areas of the basal forebrain, namely, hippocampus, frontal cortex and amygdala. RESULTS: Injection of vehicle alone into the medial septum impaired memory for temporal order and spatial location of objects. Application of 1pmol of the NK(2) receptor antagonist partially reversed this deficit by reinstating memory for temporal order. Injection of 10pmol of the NK(2) receptor antagonist into the medial septum decreased levels of ACh in the hippocampus (at 30min post-injection), and frontal cortex (at 30 and 80min post-injection) in comparison to vehicle. However, this apparent decrease was the result of the blockade of a saline-induced increase in ACh levels.[Abstract] [Full Text] [Related] [New Search]