These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron spin relaxation of exchange coupled pairs of transition metal ions in solids. Ti2+-Ti2+ pairs and single Ti2+ ions in SrF2 crystals.
    Author: Hoffmann SK, Lijewski S, Goslar J, Ulanov VA.
    Journal: J Magn Reson; 2010 Jan; 202(1):14-23. PubMed ID: 19857979.
    Abstract:
    EPR (X- and Q-band) and electron spin relaxation measured by electron spin echo method (X-band) were studied for Ti(2+)(S=1) and Ti(2+)-Ti(2+) pairs in SrF(2) crystal at room temperature and in the temperature range 4.2-115 K. EPR spectrum consists of a strong line from Ti(2+) and quartets 2:3:3:2 from titanium pairs (S=2). Spin-Hamiltonian parameters of the pairs are g( parallel)=1.883, g( perpendicular)=1.975 and D=0.036 cm(-1). Temperature behavior of the dimer spectrum indicates ferromagnetic coupling between Ti(2+). Spin-lattice relaxation of individuals Ti(2+) is dominated by the ordinary two-phonon Raman process involving the whole phonon spectrum up to the Debye temperature Theta(D)=380 K with spin-phonon coupling parameter equal to 215 cm(-1). Important contribution to the relaxation arises from local mode vibrations of energy 133 cm(-1). The pair relaxation is faster due to the exchange coupling modulation mechanism with the relaxation rate characteristic for ferromagnetic ground state of the pairs 1/T(1) is proportional to [exp(2J/kT)-1](-1) which allowed to estimate the exchange coupling J=36 cm(-1). The theories of electron-lattice relaxation governed by exchange interaction are outlined for extended spin systems, for clusters and for individual dimers. Electron spin echo decay is strongly modulated by coupling with surrounding (19)F nuclei. FT-spectrum of the modulations shows a dipolar splitting of the fluorine lines, which allows the evaluation of the off-center shift of Ti(2+) in pair as 0.132 nm. The electron spin echo dephasing is dominated by an instantaneous diffusion at low temperatures and by the spin-lattice relaxation processes above 18K.
    [Abstract] [Full Text] [Related] [New Search]