These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth.
    Author: Dason JS, Romero-Pozuelo J, Marin L, Iyengar BG, Klose MK, Ferrús A, Atwood HL.
    Journal: J Cell Sci; 2009 Nov 15; 122(Pt 22):4109-21. PubMed ID: 19861494.
    Abstract:
    Drosophila Frequenin (Frq) and its mammalian and worm homologue, NCS-1, are Ca(2+)-binding proteins involved in neurotransmission. Using site-specific recombination in Drosophila, we created two deletions that removed the entire frq1 gene and part of the frq2 gene, resulting in no detectable Frq protein. Frq-null mutants were viable, but had defects in larval locomotion, deficient synaptic transmission, impaired Ca(2+) entry and enhanced nerve-terminal growth. The impaired Ca(2+) entry was sufficient to account for reduced neurotransmitter release. We hypothesized that Frq either modulates Ca(2+) channels, or that it regulates the PI4Kbeta pathway as described in other organisms. To determine whether Frq interacts with PI4Kbeta with consequent effects on Ca(2+) channels, we first characterized a PI4Kbeta-null mutant and found that PI4Kbeta was dispensable for synaptic transmission and nerve-terminal growth. Frq gain-of-function phenotypes remained present in a PI4Kbeta-null background. We conclude that the effects of Frq are not due to an interaction with PI4Kbeta. Using flies that were trans-heterozygous for a null frq allele and a null cacophony (encoding the alpha(1)-subunit of voltage-gated Ca(2+) channels) allele, we show a synergistic effect between these proteins in neurotransmitter release. Gain-of-function Frq phenotypes were rescued by a hypomorphic cacophony mutation. Overall, Frq modulates Ca(2+) entry through a functional interaction with the alpha(1) voltage-gated Ca(2+)-channel subunit; this interaction regulates neurotransmission and nerve-terminal growth.
    [Abstract] [Full Text] [Related] [New Search]