These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative analysis of safranal in saffron extract and nanoparticle formulation by a validated high-performance thin-layer chromatographic method.
    Author: Pathan SA, Alam S, Jain GK, Zaidi SM, Akhter S, Vohora D, Khar RK, Ahmad FJ.
    Journal: Phytochem Anal; 2010; 21(3):219-23. PubMed ID: 19862835.
    Abstract:
    INTRODUCTION: Safranal is an effective anticonvulsant shown to act as an agonist at GABA(A) receptors. Nose to brain delivery via nanoparticle formulation might improve its brain delivery. A selective and sensitive analytical method is required for evaluation of safranal-based novel drug delivery systems. OBJECTIVE: To develop and validate a high-performance thin-layer chromatographic (HPTLC) method for the quantitative analysis of safranal as bulk, in saffron extract and in developed safranal-loaded nanoparticle formulation. METHODOLOGY: Chromatographic separation was achieved on silica gel pre-coated TLC aluminium plates 60F-254, using n-hexane:ethyl acetate (9 : 1, v/v) as the mobile phase. Quantitative analysis was carried out by densitometry at a wavelength of 310 nm. The method was validated and applied to detect related impurities, to analyse safranal in saffron extract and to evaluate safranal-loaded nanoparticles. RESULTS: Compact spots of safranal were observed at R(f) value 0.51 +/- 0.02. The method was linear (r = 0.9991) between 0.5 and 5.0 ng/spot. The intra- and inter-day precisions were 1.08-2.17 and 1. 86-3.47%, respectively. The limit of detection was 50 ng/spot and the limit of quantification was 150 ng/spot. The method proved to be accurate (recovery 97.4-102.0%) and was selective for safranal. Evaluation of safranal-loaded nanoparticle formulation demonstrated drug loading of 23.0%, encapsulation efficiency of 42.0% and sustained drug release following biphasic pattern. CONCLUSION: The present method is useful for the quantitative and qualitative analysis of safranal and safranal-loaded nanoparticle formulation. It provides significant advantages in terms of greater specificity and rapid analysis.
    [Abstract] [Full Text] [Related] [New Search]