These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. Author: Ugenskiene R, Prise K, Folkard M, Lekki J, Stachura Z, Zazula M, Stachura J. Journal: Int J Radiat Biol; 2009; 85(10):872-82. PubMed ID: 19863201. Abstract: PURPOSE: The effect of different radiation qualities on (i) 53BP1 (p53 Binding Protein 1) and p-ATM (phosphorylated ataxia telangiectasia mutated) foci induction, and (ii) on the kinetics of foci disappearance was analysed. MATERIAL AND METHODS: Normal human skin fibroblasts were exposed to 240 kV broad-field X-rays or targeted with individually counted helium ((3)He) particles or protons ((1)H) from a Charged Particle Microbeam. Anti-p-ATM and anti-53BP1 antibodies were used for foci visualisation via immunocytochemistry. RESULTS: 1 Gy of X-rays yielded approximately 33 53BP1-positive foci/cell. The ratio between the number of delivered particles and yielded tracks was found to be 1:1 and 3:1 after targeted (3)He and (1)H irradiation, respectively. It was determined that approximately 50% of radiation-induced damage was repaired as measured by loss of foci during the first 2, 6, and 10 hours following X-ray, protons, and (3)He irradiation, respectively. CONCLUSIONS: There was significant radiation quality dependence for 53BP1- and p-ATM-positive foci induction observed. Foci disappearance was radiation dose-independent in the samples irradiated with X-rays. Our results confirm that kinetics of foci disappearance depends on radiation quality, even when individual ions are targeted to cells.[Abstract] [Full Text] [Related] [New Search]