These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex.
    Author: Li Y, Zon G, Wilson WD.
    Journal: Proc Natl Acad Sci U S A; 1991 Jan 01; 88(1):26-30. PubMed ID: 1986374.
    Abstract:
    1H NMR experiments indicate that the oligomer 5'-d(ATGAGCGAATA) forms an unusual 10-base-pair duplex with 4 G.A base pairs (underlined) and a 3' unpaired adenosine. NMR results indicate that guanosine imino protons of the G.A mismatches are not hydrogen bonded but are stacked in the helix. A G----I substitution in either G.A base pair causes a dramatic decrease in duplex stability and indicates that hydrogen bonding of the guanosine amino group is critical. Nuclear Overhauser effect spectroscopy (NOESY) and two-dimensional correlated spectroscopy (COSY) results indicate that the overall duplex conformation is in the B-family. Cross-strand NOEs in two-dimensional NOESY spectra between a mismatched AH2 and an AH1' of the other mismatched base pair and between a mismatched GH8 and GNH1 of the other mismatch establish a purine-purine stacking pattern, adenosine over adenosine and guanosine over guanosine, which strongly stabilizes the duplex. A computer graphics molecular model of the unusual duplex was constructed with G.A base pairs containing A-NH2 to GN3 and G-NH2 to AN7 hydrogen bonds and B-form base pairs on both sides of the G.A pairs [5'-d(ATGAGC)]. The energy-minimized duplex satisfies all experimental constraints from NOESY and COSY results. A hydrogen bond from G-NH2 of the mismatch to a phosphate oxygen is predicted.
    [Abstract] [Full Text] [Related] [New Search]