These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Language or music, mother or Mozart? Structural and environmental influences on infants' language networks.
    Author: Dehaene-Lambertz G, Montavont A, Jobert A, Allirol L, Dubois J, Hertz-Pannier L, Dehaene S.
    Journal: Brain Lang; 2010 Aug; 114(2):53-65. PubMed ID: 19864015.
    Abstract:
    Understanding how language emerged in our species calls for a detailed investigation of the initial specialization of the human brain for speech processing. Our earlier research demonstrated that an adult-like left-lateralized network of perisylvian areas is already active when infants listen to sentences in their native language, but did not address the issue of the specialization of this network for speech processing. Here we used fMRI to study the organization of brain activity in two-month-old infants when listening to speech or to music. We also explored how infants react to their mother's voice relative to an unknown voice. The results indicate that the well-known structural asymmetry already present in the infants' posterior temporal areas has a functional counterpart: there is a left-hemisphere advantage for speech relative to music at the level of the planum temporale. The posterior temporal regions are thus differently sensitive to the auditory environment very early on, channelling speech inputs preferentially to the left side. Furthermore, when listening to the mother's voice, activation was modulated in several areas, including areas involved in emotional processing (amygdala, orbito-frontal cortex), but also, crucially, a large extent of the left posterior temporal lobe, suggesting that the mother's voice plays a special role in the early shaping of posterior language areas. Both results underscore the joint contributions of genetic constraints and environmental inputs in the fast emergence of an efficient cortical network for language processing in humans.
    [Abstract] [Full Text] [Related] [New Search]