These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of hepatocyte nuclear factor-3alpha induces apoptosis through the upregulation and accumulation of cytoplasmic p53 in prostate cancer cells.
    Author: Lee HJ, Chattopadhyay S, Yoon WH, Bahk JY, Kim TH, Kang HS, Lee K.
    Journal: Prostate; 2010 Mar 01; 70(4):353-61. PubMed ID: 19866472.
    Abstract:
    BACKGROUND: Hepatocyte nuclear factor-3alpha (HNF-3alpha) has been known to act as a repressor in the pathogenesis of many cancers. Herein, we investigated the effect of HNF-3alpha overexpression in prostate cancer cells. METHODS: HNF-3alpha was overexpressed in prostate cancer cells using an adenovirus recombinant expressing wild-type HNF-3alpha. The apoptosis of prostate cancer cells was determined by TUNEL, FACS, and caspase activity analyses. RESULTS: Adenovirus-mediated overexpression of HNF-3alpha caused cell death in prostate cancer cells as assessed by changes in cellular and nuclear morphology, TUNEL analysis, and caspase activations. Furthermore, FACS analysis showed an increased sub-G1 phase of cell cycle as well as the G2/M phase with a corresponding decrease in S phases. HNF-3alpha overexpression caused the upregulation of p53 protein and its accumulation, together with HNF-3alpha, in the cytoplasm. It also causes Bax protein to localize to the mitochondria-enriched fraction. These findings suggest that multiple apoptotic pathways seem to be involved in the HNF-3alpha-induced cell death: pathways involving the accumulation of p53 protein in the cytoplasm and subsequent cytochrome c release, and other pathways involving death receptor signaling and caspase-8 activation. CONCLUSIONS: The results of the current study suggest a novel function of HNF-3alpha as a killer of malignant prostate cancer cells, which reveals HNF-3alpha as a promising therapeutic molecule for prostate cancers.
    [Abstract] [Full Text] [Related] [New Search]