These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+o-independent veratridine-evoked acetylcholine release from striatal slices is not inhibited by vesamicol (AH5183): mobilization of distinct transmitter pools.
    Author: Adam-Vizi V, Deri Z, Vizi ES, Sershen H, Lajtha A.
    Journal: J Neurochem; 1991 Jan; 56(1):52-8. PubMed ID: 1987325.
    Abstract:
    The effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol), a compound known to block the uptake of acetylcholine (ACh) into cholinergic synaptic vesicles, on the release of endogenous and [14C]ACh from slices of rat striatum was investigated. ACh release was evoked either by electrical stimulation or by veratridine. The effect of electrical stimulation was entirely dependent on external Ca2+. By contrast, veratridine (40 microM) also enhanced ACh release in the absence of Ca2+. Indeed, with veratridine two components were clearly distinguished: one dependent on external Ca2+ and the other not. Vesamicol inhibited [14C]ACh release evoked by both veratridine and electrical stimulation in the presence of external Ca2+, provided it was added to the tissue prior to loading with [14C]choline. With the same treatment vesamicol only slightly affected the release of endogenous ACh. Under the same conditions the Ca2(+)-independent [14C]ACh release evoked by veratridine was not prevented by vesamicol. The differential responsiveness to vesamicol suggests that ACh pools involved in Ca2+o-dependent ACh release are different from those mobilized during Ca2+o-independent ACh release.
    [Abstract] [Full Text] [Related] [New Search]