These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. Author: Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W. Journal: ACS Nano; 2009 Nov 24; 3(11):3749-61. PubMed ID: 19877695. Abstract: The alpha-Fe(2)O(3) with various morphologies has been successfully synthesized via an ionic liquid-assisted hydrothermal synthetic method. The samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope (FE-SEM), transmission electron microscopy, and high-resolution transmission electron microscopy. The results indicate that the as-prepared samples are alpha-Fe(2)O(3) nanoparticles, mesoporous hollow microspheres, microcubes, and porous nanorods. The effects of the ionic liquid 1-n-butyl-3-methylimidazolium chloride ([bmim][Cl]) on the formation of the alpha-Fe(2)O(3) with various morphologies have been investigated systematically. The proposed formation mechanisms have also been investigated on the basis of a series of FE-SEM studies of the products obtained at different durations. Because of the unique porous structure, the potential application in water treatment of the alpha-Fe(2)O(3) porous nanorods was investigated. The UV-vis measurements suggest that the as-synthesized pure alpha-Fe(2)O(3) with various morphologies possess different optical properties depending on the shape and size of the samples. The magnetic hysteresis measurements indicate the interesting magnetic property evolution in the as-prepared alpha-Fe(2)O(3) samples, which is attributed to the superstructure or the shape anisotropy of the samples. This method is expected to be a useful technique for controlling the diverse shapes of crystalline inorganic materials for a variety of applications, such as sensors, gas and heavy metal ion adsorbents, catalytic fields, hydrogen and Li ion storage, and controlled drug delivery, etc.[Abstract] [Full Text] [Related] [New Search]