These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microencapsulation of cytarabine using poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers as surfactant agents. Author: Diab R, Hamoudeh M, Boyron O, Elaissari A, Fessi H. Journal: Drug Dev Ind Pharm; 2010 Apr; 36(4):456-69. PubMed ID: 19877831. Abstract: BACKGROUND: The high water solubility and the low molecular weight of cytarabine (Ara-C) are major obstacles against its particulate formulation as a result of its low affinity to the commonly used hydrophobic polymers. METHODS: Biodegradable cytarabine loaded-microparticles (Ara-C MPs) were elaborated using poly(-caprolactone) (PCL) and monomethoxy polyethylene glycol (mPEG)-PCL diblock copolymer in order to increase the hydrophilicity of the polymeric matrix. For this purpose, a series of mPEG-PCL diblock copolymers with different PCL block lengths were synthesized. Compositions and molecular weights of obtained copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, size exclusion chromatography, and size exclusion chromatography-multi-angle laser light scattering. Ara-C MPs were prepared by double emulsion-solvent evaporation method. The effects of varying PCL block lengths on microparticle encapsulation efficiency, size, and zeta potential were evaluated. RESULTS: Increasing the PCL block lengths of copolymers substantially increased the Ara-C encapsulation efficiency and the microparticle size but it decreased their zeta potential. Microparticles were spherical in shape, with a smooth surface and composed of homogenously distributed Ara-C-containing aqueous domains in the polymer matrix. The in vitro drug release kinetics of the optimized microparticles showed a hyperbolic profile with an initial burst release. CONCLUSION: These results showed the important role of the amphiphilic diblock copolymers as stabilizing agent in the encapsulation of Ara-C in PCL microparticles, suggesting their potential use for the microparticulate formulations of other small hydrophilic bioactive molecules.[Abstract] [Full Text] [Related] [New Search]