These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Use of stereoisomers of zacopride to analyze actions of 5-hydroxytryptamine on enteric neurons.
    Author: Wade PR, Mawe GM, Branchek TA, Gershon MD.
    Journal: Am J Physiol; 1991 Jan; 260(1 Pt 1):G80-90. PubMed ID: 1987811.
    Abstract:
    Two subtypes of excitatory 5-hydroxytryptamine (5-HT) receptor, 5-HT1P and 5-HT3, are found on type 2-AH neurons of the guinea pig myenteric plexus. The 5-HT1P receptor mediates a slow and the 5-HT3 receptor a fast depolarization of these cells, however, the role of these receptors in the physiology of the gut is unknown. Renzapride (BRL 24924), a substituted benzamide, has previously been found to antagonize responses of myenteric neurons mediated by both 5-HT1P and 5-HT3 receptors. The effects on myenteric type 2-AH neurons of a structurally similar benzamide, zacopride, which unlike renzapride has S and R stereoisomers, were investigated to gain further insight into 5-HT receptor function. In contrast to renzapride, S-, but not R-zacopride, was found to mimic the 5-HT1P receptor-mediated slow response to 5-HT. Desensitization of 5-HT1P receptors with 5-HT inhibited slow depolarizing responses to S-zacopride, and desensitization with S-zacopride antagonized slow responses to 5-HT. Responses to S-zacopride were also inhibited by renzapride and the 5-HT1P receptor antagonist N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide (5-HTP-DP). S-zacopride, like renzapride and 5-HT, presynaptically inhibited nicotinic fast excitatory postsynaptic potentials, an effect that can be mediated by 5-HT1P or 5-HT1A receptors. Both S and R stereoisomers of zacopride antagonized 5-HT3 receptor-mediated fast responses to 5-HT. Unlike 5-HTP-DP, neither zacopride or its stereoisomers nor renzapride inhibited the binding of 5-[3H]HT to 5-HT1P receptors. [3H]zacopride (5-10 nM) was found to bind to a site in the gut from which it could be displaced by a 1,000-fold excess of renzapride and S-zacopride (but not R-zacopride) greater than 5-HTP-DP much greater than the 5-HT3 receptor antagonist ICS 205-930. These observations suggest that, in addition to 5-HT3 receptors, there is a benzamide binding site on myenteric neurons that interacts with, but is distinct from, the 5-HT recognition site of 5-HT1P receptors. Benzamides may affect coupling of the 5-HT1P receptor to its effector.
    [Abstract] [Full Text] [Related] [New Search]