These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes.
    Author: Campo GM, Avenoso A, Campo S, D'Ascola A, Nastasi G, Calatroni A.
    Journal: Biochimie; 2010 Feb; 92(2):204-15. PubMed ID: 19879319.
    Abstract:
    Hyaluronan (HA) action depends upon its molecular size. Low molecular weight HA elicits pro-inflammatory responses by modulating the toll-like receptor-4 (TLR-4) or by activating the nuclear factor kappa B (NF-kB). In contrast, high molecular weight HA manifests an anti-inflammatory effect via CD receptors and by inhibiting NF-kB activation. Lipopolysaccharide (LPS) -mediated activation of TLR-4 complex induces the myeloid differentiation primary-response protein (MyD88) and the tumor necrosis factor receptor-associated factor-6 (TRAF-6), and ends with the liberation of NF-kB/Rel family members. The aim of this study was to investigate the influence of HA at different MWs (low, medium, high) on TLR-4 modulation in LPS-induced inflammatory response in mouse chondrocyte cultures. Messenger RNA and related protein levels were measured for TLR-4, MyD88, and TRAF-6 in both untreated and LPS-treated chondrocytes, with and without the addition of HA (two doses for each MW). NF-kB activation, TNF-alpha and IL-1beta levels, matrix metalloprotease-13 (MMP-13), and inducible nitric oxide synthase (iNOS) gene expression were also evaluated. LPS increased all the parameters studied as well as NF-kB activation. Low MW HA upregulated TLR-4 expression, increased MyD88 and TRAF-6 and the inflammation mediators in untreated chondrocytes, and it enhanced the LPS effect in LPS-treated cells. Medium and high MW HA exerted no activity in untreated cells and only the latter reduced the LPS effects. Specific TLR-4 blocking antibody was utilised to confirm TLR-4 as the target of HA action. These findings suggest that the regulatory effect exerted by HA (at any MW) on NF-kB activation may depend upon the interaction between HA and TLR-4 and HA may thereby modulate pro-inflammatory activity via its different state of aggregation.
    [Abstract] [Full Text] [Related] [New Search]