These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolism of azoxymethane, methylazoxymethanol and N-nitrosodimethylamine by cytochrome P450IIE1.
    Author: Sohn OS, Ishizaki H, Yang CS, Fiala ES.
    Journal: Carcinogenesis; 1991 Jan; 12(1):127-31. PubMed ID: 1988172.
    Abstract:
    The metabolism of azoxymethane (AOM), methylazoxymethanol (MAM) and N-nitrosodimethylamine (NDMA) by liver microsomes from acetone-induced rats as well as by a reconstituted system containing purified cytochrome P450IIE1 was examined. The products consisted of MAM from AOM; methanol and formic acid from MAM; and methylamine, formaldehyde, methanol, methylphosphate and formic acid from NDMA. Compared to liver microsomes from untreated rats, the metabolic activity of acetone-induced microsomes was approximately 4 times higher for all three carcinogens. Using the reconstituted system, the enzyme activities (nmol substrate metabolized/nmol P450/min) for AOM, MAM and NDMA were 2.88 +/- 1.14, 2.87 +/- 0.59 and 9.47 +/- 2.24 respectively. Incubations carried out in the presence of a monoclonal antibody to cytochrome P450IIE1 resulted in a 85-90% inhibition of all three reactions in this system. These results provide conclusive evidence that AOM, MAM and NDMA are metabolized by the same form of rat liver cytochrome P450. In addition, the stoichiometry of NDMA products formed in these reactions indicates that denitrosation, a presumed detoxication process, and alpha-hydroxylation, an activation reaction, are also catalyzed by the same cytochrome P450 isozyme.
    [Abstract] [Full Text] [Related] [New Search]