These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficiently mining time-delayed gene expression patterns. Author: Wang G, Yin L, Zhao Y, Mao K. Journal: IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):400-11. PubMed ID: 19884096. Abstract: Unlike pattern-based biclustering methods that focus on grouping objects in the same subset of dimensions, in this paper, we propose a novel model of coherent clustering for time-series gene expression data, i.e., time-delayed cluster (td-cluster). Under this model, objects can be coherent in different subsets of dimensions if these objects follow a certain time-delayed relationship. Such a cluster can discover the cycle time of gene expression, which is essential in revealing gene regulatory networks. This paper is the first attempt to mine time-delayed gene expression patterns from microarray data. A novel algorithm is also presented and implemented to mine all significant td-clusters. Our experimental results show following two results: 1) the td-cluster algorithm can detect a significant amount of clusters that were missed by previous models, and these clusters are potentially of high biological significance and 2) the td-cluster model and algorithm can easily be extended to 3-D gene x sample x time data sets to identify 3-D td-clusters.[Abstract] [Full Text] [Related] [New Search]