These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Author: Jiang Y, Xie X, Zhang Y, Luo X, Wang X, Fan F, Zheng D, Wang Z, Chen Y. Journal: Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349. Abstract: Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of alpha, beta, and gamma subunits, leading to dissociation of the G alpha subunit from the G betagamma subunit. While the G alpha subunit is imperative for downstream signaling, the G betagamma subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the G betagamma subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with G beta and tethers G betagamma to the Golgi apparatus. Overexpression of RKTG impedes the interaction of G betagamma with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the beta2-adrenergic receptor (beta 2AR), and alters beta 2AR desensitization. In addition, RKTG inhibits G betagamma- and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced G beta translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering G betagamma to the Golgi apparatus and thereby attenuating the functions of G betagamma.[Abstract] [Full Text] [Related] [New Search]