These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of nitric oxide synthase and heme oxygenase in the protective effect of hypothermia in ischemia-reperfusion injury. Author: Ward R, Souder N, Stahl D, Hunter F, Probe R, Chaput C, Childs E. Journal: J Bone Joint Surg Am; 2009 Nov; 91(11):2637-45. PubMed ID: 19884438. Abstract: BACKGROUND: Ischemia-reperfusion injury plays an important role in limb salvage following limb ischemia. The purpose of the present study was to evaluate the effect of local hypothermia and chemical modulators on microvascular permeability following ischemia-reperfusion injury in skeletal muscle. METHODS: Sprague-Dawley rats were randomized into nine groups. Postcapillary venules of the extensor digitorum longus muscle were visualized with use of intravital microscopy. Following an intravenous bolus of fluorescein isothiocyanate-labeled albumin, the intravascular and extravascular space was examined for leak. Rats in the sham group underwent a one-hour mock ischemic period without the application of a femoral artery tourniquet, followed by one hour of mock reperfusion. The treatment groups (n = 5 in each group) had the tourniquet applied for one hour, followed by one hour of reperfusion at 10 degrees C (cold) alone, at 10 degrees C with nitric oxide synthase inhibitor, at 10 degrees C with heme oxygenase inhibitor, at 10 degrees C with a combination of inhibitors, at 34 degrees C (warm) alone, at 34 degrees C with a heme oxygenase inducer, at 34 degrees C with a nitric oxide synthase inducer, or at 34 degrees C with a combination of inducers. RESULTS: Rats in the sham group did not show a significant increase in microvascular permeability. Rats in the warm ischemia/reperfusion group displayed significant increases in microvascular permeability, as did the rats that received inhibitors of heme oxygenase and nitric oxide synthase at 10 degrees C. No significant increase in microvascular permeability was observed in the animals in the cold ischemia/reperfusion group or in animals that received inducers of heme oxygenase and nitric oxide synthase at 34 degrees C. CONCLUSIONS: Local hypothermia protects skeletal muscle from increased microvascular permeability following ischemia-reperfusion injury. This protective effect is also seen with the induction of the nitric oxide synthase and heme oxygenase systems at physiologic temperature. We also have shown that the protective effects of hypothermia are blocked by giving heme oxygenase and nitric oxide synthase inhibitors while keeping the muscle hypothermic. These findings demonstrate that heme oxygenase and nitric oxide synthase play a combined role in ischemia-reperfusion injury, suggesting possible pathways for clinical intervention to modulate injury seen following trauma, tourniquet use, vascular surgery, and microvascular surgery.[Abstract] [Full Text] [Related] [New Search]