These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Location of the active site for enzyme-adenylate formation in DNA ligases.
    Author: Tomkinson AE, Totty NF, Ginsburg M, Lindahl T.
    Journal: Proc Natl Acad Sci U S A; 1991 Jan 15; 88(2):400-4. PubMed ID: 1988940.
    Abstract:
    The enzyme-AMP reaction intermediate of the 102-kDa bovine DNA ligase I was digested with trypsin, and the adenylylated peptide was isolated by chromatography under conditions that maintain the acid-labile phosphoramidate bond. Microsequencing of the peptide showed that it contains an internal trypsin-resistant lysine residue, as expected for the site of adenylylation. Inhibition of DNA ligase I activity by pyridoxal 5'-phosphate also indicated the presence of a reactive lysine residue in the catalytic domain of the enzyme. Comparison of the known primary structures of several other DNA ligases with the adenylylated region of mammalian DNA ligase I allows their active sites to be tentatively assigned by sequence homology. The ATP-dependent DNA ligases of mammalian cells, fission yeast, budding yeast, vaccinia virus, and bacteriophages T3, T4, and T7 contain the active site motif Lys-Tyr/Ala-Asp-Gly-(Xaa)-Arg, with the reactive lysine residue flanked by hydrophobic amino acids. The distance between the postulated adenylylation site and the carboxyl terminus of the polypeptide is very similar in these ATP-dependent DNA ligases, whereas the size of the amino-terminal region is highly variable.
    [Abstract] [Full Text] [Related] [New Search]