These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: On the arsenic source mobilisation and its natural enrichment in the sediments of a high mountain cirque in the Pyrenees. Author: Zaharescu DG, Hooda PS, Fernandez J, Soler AP, Burghelea CI. Journal: J Environ Monit; 2009 Nov; 11(11):1973-81. PubMed ID: 19890554. Abstract: Recently arsenic contamination and its environmental and human health problems have been raising concerns worldwide. The occurrence of natural high levels of arsenic contamination has generally been reported for low altitude environments. Here we report a study conducted to assess the extent of arsenic mobilisation/transportation from previously identified arsenic source areas in a high altitude cirque of the Pyrenees as well as the potential contribution of As by snow. The concentration of arsenic in sediments of several tributaries was enriched up to about ten folds due to mobilisation of arsenic from the source areas within the catchment. The highest arsenic enrichments were found in an area dominated by quartzite and slate formation in the southern side of the basin, and it generally diminished towards the major lake downstream, possible due to mixing with sediments from non-source areas. At these sites arsenic exceeded the hazard quotient (HQ) limits for the protection of aquatic life. The potential hazard of the As-enriched sediments may be further enhanced outside the catchment as samples collected downstream the cirque have also shown arsenic concentration exceeding HQ unity. The arsenic concentrations in the water collected at a number of sites exceeded its guide value for the protection of aquatic life. The potential As contribution by snow in the area was low and was largely of lithospheric origin. The PCA analysis showed strong association of arsenic in sediments with the sediment mineralogical composition (Fe2O3, TiO2 and Mn). Arsenic in water was positively correlated with its concentration in the sediments and could potentially increase if the environmental/climate conditions change.[Abstract] [Full Text] [Related] [New Search]