These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta1 for cartilage tissue engineering. Author: Hu X, Ma L, Wang C, Gao C. Journal: Macromol Biosci; 2009 Dec 08; 9(12):1194-201. PubMed ID: 19890886. Abstract: Gelatin is a nature-derived protein having good cytocompatibility, and widely used in tissue engineering particularly in a form of a hydrogel. To obtain the hydrogel with good enough mechanical properties, however, measures are still need to be taken. In this work, the gelatin molecule was modified with methacrylic acid (MA) to obtain crosslinkable gelatin (GM), which formed a chemically crosslinked hydrogel by photoinitiating polymerization. The gelation time could be easily tuned and showed an inverse relationship with the GM concentration. After photo-irradiation for 20 min there was no detectable double carbon bond in the hydrogen spectrum of high resolution magic angle spinning nuclear magnetic resonance spectroscopy ((1)H HR-MAS NMR). With the increase of the GM concentration, storage modulus and loss modulus of the hydrogels increased, but their swelling ratio and mesh size decreased. Weight loss of the hydrogels was also affected by the polymer concentration. Transform growth factor-beta1 (TGF-beta1) was incorporated into the GM hydrogel to improve its bioactivity. In vitro chondrocyte culture showed that the GM hydrogel had indeed good performance to support chondrocyte growth and maintain chondrocytic phenotype. Incorporation of TGF-beta1 could further improve the biological activity in terms of cell proliferation and extracellular matrix secretion.[Abstract] [Full Text] [Related] [New Search]