These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery of 4-morpholino-6-aryl-1H-pyrazolo[3,4-d]pyrimidines as highly potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): optimization of the 6-aryl substituent. Author: Verheijen JC, Richard DJ, Curran K, Kaplan J, Lefever M, Nowak P, Malwitz DJ, Brooijmans N, Toral-Barza L, Zhang WG, Lucas J, Hollander I, Ayral-Kaloustian S, Mansour TS, Yu K, Zask A. Journal: J Med Chem; 2009 Dec 24; 52(24):8010-24. PubMed ID: 19894727. Abstract: Design and synthesis of a series of 4-morpholino-6-aryl-1H-pyrazolo[3,4-d]pyrimidines as potent and selective inhibitors of the mammalian target of rapamycin (mTOR) are described. Optimization of the 6-aryl substituent led to the discovery of inhibitors carrying 6-ureidophenyl groups, the first reported active site inhibitors of mTOR with subnanomolar inhibitory concentrations. The data presented in this paper show that 6-arylureidophenyl substituents led to potent mixed inhibitors of mTOR and phosphatidylinositol 3-kinase alpha (PI3K-alpha), whereas 6-alkylureidophenyl appendages gave highly selective mTOR inhibitors. Combination of 6-alkylureidophenyl groups with 1-carbamoylpiperidine substitution resulted in compounds with subnanomolar IC(50) against mTOR and greater than 1000-fold selectivity over PI3K-alpha. In addition, structure based drug design resulted in the preparation of several 6-arylureidophenyl-1H-pyrazolo[3,4-d]pyrimidines, substituted in the 4-position of the arylureido moiety with water solubilizing groups. These compounds combined potent mTOR inhibition (IC(50) < 1 nM) with unprecedented activity in cellular proliferation assays (IC(50) < 1 nM).[Abstract] [Full Text] [Related] [New Search]