These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of inhibitor-bound alpha-synuclein dimer: role of alpha-synuclein N-terminal region in dimerization and inhibitor binding. Author: Yamaguchi Y, Masuda M, Sasakawa H, Nonaka T, Hanashima S, Hisanaga S, Kato K, Hasegawa M. Journal: J Mol Biol; 2010 Jan 22; 395(3):445-56. PubMed ID: 19895818. Abstract: alpha-Synuclein is a major component of filamentous inclusions that are histological hallmarks of Parkinson's disease and other alpha-synucleinopathies. Previous analyses have revealed that several polyphenols inhibit alpha-synuclein assembly with low micromolar IC(50) values, and that SDS-stable, noncytotoxic soluble alpha-synuclein oligomers are formed in their presence. Structural elucidation of inhibitor-bound alpha-synuclein oligomers is obviously required for the better understanding of the inhibitory mechanism. In order to characterize inhibitor-bound alpha-synucleins in detail, we have prepared alpha-synuclein dimers in the presence of polyphenol inhibitors, exifone, gossypetin, and dopamine, and purified the products. Peptide mapping and mass spectrometric analysis revealed that exifone-treated alpha-synuclein monomer and dimer were oxidized at all four methionine residues of alpha-synuclein. Immunoblot analysis and redox-cycling staining of endoproteinase Asp-N-digested products showed that the N-terminal region (1-60) is involved in the dimerization and exifone binding of alpha-synuclein. Ultra-high-field NMR analysis of inhibitor-bound alpha-synuclein dimers showed that the signals derived from the N-terminal region of alpha-synuclein exhibited line broadening, confirming that the N-terminal region is involved in inhibitor-induced dimerization. The C-terminal portion still predominantly exhibited the random-coil character observed in monomeric alpha-synuclein. We propose that the N-terminal region of alpha-synuclein plays a key role in the formation of alpha-synuclein assemblies.[Abstract] [Full Text] [Related] [New Search]