These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].
    Author: Tian YC, Yang J, Yao X, Zhu Y, Cao WX.
    Journal: Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1685-90. PubMed ID: 19899471.
    Abstract:
    Based on field experiments with different rice varieties under different nitrogen application levels, the quantitative relationships of rice leaf area index (LAI) with canopy hyper-spectral parameters at different growth stages were analyzed. Rice LAI had good relationships with several hyper-spectral vegetation indices, the correlation coefficient being the highest with DI (difference index), followed by with RI (ratio index), and NI (normalized index), based on the spectral reflectance or the first derivative spectra. The two best spectral indices for estimating LAI were the difference index DI (854, 760) (based on two spectral bands of 850 nm and 760 nm) and the difference index DI (D676, D778) (based on two first derivative bands of 676 nm and 778 nm). In general, the hyper-spectral vegetation indices based on spectral reflectance performed better than the spectral indices based on the first derivative spectra. The tests with independent dataset suggested that the rice LAI monitoring models with difference index DI (854,760) as the variable could give an accurate LAI estimation, being available for estimation of rice LAI.
    [Abstract] [Full Text] [Related] [New Search]