These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Author: McCarthy AJ, Goodman SJ. Journal: Infect Genet Evol; 2010 Jan; 10(1):97-107. PubMed ID: 19900582. Abstract: The evolution of paramyxoviruses is still poorly understood since past phylogenetic studies have revealed conflicting evolutionary signals among genes, and used varying methods and datasets. Using Bayesian phylogenetic analysis of full length single and concatenated sequences for the 6 genes shared among paramyxovirus genera, we reassess the ambiguous evolutionary relationships within the family, and examine causes of varying phylogenetic signals among different genes. Relative to a pneumovirus outgroup, the concatenated gene phylogeny, splits the Paramyxovirinae into two lineages, one comprising the avulaviruses and rubulaviruses, and a second containing the respiroviruses basal to the henipaviruses, and morbilliviruses. Phylogenies for the matrix (M), RNA dependent RNA polymerase (L) and the fusion (F) glycoprotein genes, are concordant with the topology from the concatenated dataset. In phylogenies derived from the nucleocapsid (N) and phosphoprotein (P) genes, the respiroviruses form the most basal genus of the Paramyxovirinae subfamily, with the avulaviruses and rubulaviruses in one lineage, and the henipaviruses, and morbilliviruses in a second. The phylogeny of the hemagglutinin (H) gene places the respiroviruses basal to the avula-rubulavirus group, but the relationship of this lineage with henipa and morbillviruses is not resolved. Different genes may be under varying evolutionary pressures giving rise to these conflicting signals. Given the level of conservation in the M and L genes, we suggest that together with F gene, these or concatenated datasets for all six genes are likely to reveal the most reliable phylogenies at a family level, and should be used for future phylogenetic studies in this group. Split decomposition analysis suggests that recombination within genera, may have a contributed to the emergence of dolphin morbillivirus, and several species within respiroviruses. A partial L gene alignment, resolves the relationship of 25 unclassified paramxyoviruses into 4 clades (Chiopteran-, Salmon-, Rodentian- and Ophidian paramyxoviruses) which group with rubula-, respiro-, morbilliviruses, and within the paramxyovirinae respectively.[Abstract] [Full Text] [Related] [New Search]