These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of a HER-2/neu epitope as a potential target for cancer immunotherapy.
    Author: Lekka E, Gritzapis AD, Perez SA, Tsavaris N, Missitzis I, Mamalaki A, Papamichail M, Baxevanis CN.
    Journal: Cancer Immunol Immunother; 2010 May; 59(5):715-27. PubMed ID: 19904532.
    Abstract:
    Our aim is to develop peptide vaccines that stimulate tumor antigen-specific T-lymphocyte responses against frequently detected cancers. We describe herein a novel HLA-A*0201-restricted epitope, encompassing amino acids 828-836 (residues QIAKGMSYL), which is naturally presented by various HER-2/neu (+) tumor cell lines. HER-2/neu(828-836), [HER-2(9(828))], possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent Class I binding assay. This peptide was stable for 3.5 h in an off-kinetic assay. HER-2(9(828)) was found to be immunogenic in HLA-A*0201 transgenic (HHD) mice inducing peptide-specific and functionally potent CTL and long-lasting anti-tumor immunity. Most important, using HLA-A*0201 pentamer analysis we could detect increased ex vivo frequencies of CD8(+) T-lymphocytes specifically recognizing HER-2(9(828)) in 8 out of 20 HLA-A*0201(+) HER-2/neu (+) breast cancer patients. Moreover, HER-2(9(828))-specific human CTL recognized the tumor cell line SKOV3.A2 as well as the primary RS.A2.1.DR1 tumor cell line both expressing HER-2/neu and HLA-A*0201. Finally, therapeutic vaccination with HER-2(9(828)) in HHD mice was proven effective against established transplantable ALC.A2.1.HER tumors, inducing complete tumor regression in 50% of mice. Our data encourage further exploitation of HER-2(9(828)) as a promising candidate for peptide-based cancer vaccines.
    [Abstract] [Full Text] [Related] [New Search]