These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mesogenic lattice models with partly antinematic interactions producing uniaxial nematic phases. Author: De Matteis G, Romano S. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031702. PubMed ID: 19905126. Abstract: The present paper considers nematogenic lattice models, involving particles of D_{2h} symmetry, whose centers of mass are associated with a three-dimensional simple cubic lattice; the pair potential is isotropic in orientation space and restricted to nearest neighbors. Let two orthonormal triads define orientations of a pair of interacting particles; the simplest potential models proposed in the literature can be reduced to a linear combination involving the squares of the scalar products between corresponding unit vectors only and depending on three parameters. By now, various sets of potential parameters have been proposed and studied in the literature, some of which capable of producing biaxial orientational order at sufficiently low temperature. On the other hand, in experimental terms, mesogenic biaxial molecules mostly produce uniaxial mesophases; thus we address here two very simple cases, involving a nematic (calamitic) term as well as one (model P0M) or two (model PPM) antinematic ones, whose coefficients are set equal in magnitude; when only one antinematic coefficient is used, the third one is set to zero. The calamitic term favors the alignment of two corresponding molecular axes, whereas antinematic terms or geometric constraints tend to keep two other pairs of axes mutually orthogonal. The models were investigated by molecular-field treatments and Monte Carlo simulation and found to predict a first- or second-order transitions between uniaxial nematic and isotropic phases; the molecular-field treatments yielded results in reasonable agreement with simulation.[Abstract] [Full Text] [Related] [New Search]