These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: xol-1, the master sex-switch gene in C. elegans, is a transcriptional target of the terminal sex-determining factor TRA-1.
    Author: Hargitai B, Kutnyánszky V, Blauwkamp TA, Steták A, Csankovszki G, Takács-Vellai K, Vellai T.
    Journal: Development; 2009 Dec; 136(23):3881-7. PubMed ID: 19906855.
    Abstract:
    In the nematode Caenorhabditis elegans, sex is determined by the ratio of X chromosomes to sets of autosomes: XX animals (2X:2A=1.0) develop as hermaphrodites and XO animals (1X:2A=0.5) develop as males. TRA-1, the worm ortholog of Drosophila Cubitus interruptus and mammalian Gli (Glioma-associated homolog) proteins, is the terminal transcription factor of the C. elegans sex-determination pathway, which specifies hermaphrodite fate by repressing male-specific genes. Here we identify a consensus TRA-1 binding site in the regulatory region of xol-1, the master switch gene controlling sex determination and dosage compensation. xol-1 is normally expressed in males, where it promotes male development and prevents dosage compensation. We show that TRA-1 binds to the consensus site in the xol-1 promoter in vitro and inhibits the expression of xol-1 in XX animals in vivo. Furthermore, inactivation of tra-1 enhances, whereas hyperactivation of tra-1 suppresses, lethality in animals with elevated xol-1 activity. These data imply the existence of a regulatory feedback loop within the C. elegans sex-determination and dosage-compensation cascade that ensures the accurate dose of X-linked genes in cells destined to adopt hermaphrodite fate.
    [Abstract] [Full Text] [Related] [New Search]