These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultra fast UV-photo detector based on single-walled carbon nanotube/PEDOT-PSS composites. Author: Najeeb CK, Lee JH, Chang J, Kang WS, Kim JH. Journal: J Nanosci Nanotechnol; 2009 Dec; 9(12):6928-33. PubMed ID: 19908700. Abstract: Single-walled carbon nanotube (SWNT)/Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), composites (SWNT/PEDOT-PSS) have been prepared using SWNTs surface modified with a natural gum, 'gum arabic' by simple mixing process. Thin films of SWNTs, PEDOT-PSS and the composites were prepared by vacuum filtration technique and were exposed to ultraviolet (UV) radiations for photoconductivity measurements. The surface resistivity of pristine SWNTs film increased from initial value of 50 omega to 92 omega and that of the polymer film decreased from 6.7 Komega to 3.1 Komega while the resistivity of the composite film decreased from 267 omega to 232 omega upon UV illumination. When the lamp was switched off, the initial resistivities of PEDOT: PSS and SWNTs films were recovered very slowly. Interestingly, on the other hand the composite films demonstrated a very fast relaxation within a few minutes. An on-off cycle ruled out the possibility of local heating effect and revealed that the switching property was originated from the fast transport of charge and heat in the composite films. This property of composite film might open up optoelectronic applications involving photoconductivity, such as photo sensors, organic light emitting diodes (OLED) and organic solar cells. Here in, we demonstrate the application of the SWNT/PEDOT-PSS composite film based device as a UV sensor.[Abstract] [Full Text] [Related] [New Search]